Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability.
نویسندگان
چکیده
Luteolin (Lut) is a common dietary flavonoid present in Chinese herbal medicines that has been reported to have important anti-inflammatory properties. The purposes of this study were to observe the inhibition of lipopolysaccharide (LPS)-induced inflammatory responses in bone marrow macrophages (BMM) by Lut, and to examine whether this inhibition involves p38/MK2/TTP-mediated mRNA stability. Lut suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner according to enzyme-linked immunosorbent assay (ELISA) analysis. Lut also shortened the half-lives of the TNF-α and IL-6 mRNAs according to real-time PCR analysis. Western blots were performed to assess the activation of p38 and MK2 as well as the expression of TTP. The results indicated that Lut inhibited p38 and MK2 phosphorylation while promoting TTP expression. These results suggest that the anti-inflammatory effects of Lut are partially mediated through p38/MK2/TTP-regulated mRNA stability.
منابع مشابه
The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation
TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU-rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE-binding and -stabilizing factor human antigen R (HuR...
متن کاملPosttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing prot...
متن کاملMK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay.
Stress granules (SGs) are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjected to environmental stress. SG-associated proteins such as TIA-1, TIAR and HuR bind to AU-rich element (ARE)-containing mRNAs and control their translation and stability. Here we show that tristetraprolin (TTP), an ARE-binding protein that destabilizes ARE-mRNAs, is re...
متن کاملMitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element.
The mitogen-activated protein kinase (MAPK) p38/MAPK-activated protein kinase 2 (MK2) signaling pathway plays an important role in the posttranscriptional regulation of tumor necrosis factor (TNF), which is dependent on the adenine/uridine-rich element (ARE) in the 3' untranslated region of TNF mRNA. After lipopolysaccharide (LPS) stimulation, MK2-deficient macrophages show a 90% reduction in T...
متن کاملStructure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function.
Tristetraprolin (TTP) is the only trans-acting factor shown to be capable of regulating AU-rich element-dependent mRNA turnover at the level of the intact animal; however, the mechanism by which TTP mediated RNA instability is unknown. Using an established model system, we performed structure/function analysis with TTP as well as examined the current hypothesis that TTP function is regulated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2013